YOST LABS

m 630 Second Street
Y m Portsmouth Ohio 45662, USA
v I wd Phone: 740.876.4936

info@yostlabs.com
yostlabs.com

) 4

ANZ2015.01

Calculating Angles Between
Two Yost Labs 3-Space Sensor™
Devices on a Human Body

1. Introduction

This application note provides the mathematics and reference source code for calculating the angle between
two YOST LABS 3-Space Sensor devices. This is especially useful for organic motion-capture, bio-mechanics
studies, range-of-motion studies, sports studies, and ergonomics studies since it is possible to extract human

joint-angles from body-worn sensors.

The YOST LABS 3-Space Sensor is a miniature, high-precision, high-reliability, Attitude and Heading Reference
System (AHRS) / Inertial Measurement Unit (IMU) in a single low-cost end-use-ready device. The Attitude and
Heading Reference System (AHRS) / Inertial Measurement Unit (IMU) uses triaxial gyroscope, accelerometer,
and compass sensors in conjunction with advanced processing and on-board quaternion-based Kalman

filtering algorithms to determine orientation relative to an absolute reference in real-time.

Orientation can also be returned relative to a designated reference orientation. This makes 3-Space Sensor
placement and alignment easier since the devices can make use of arbitrarily defined zero-identity orientations
which makes perfect physical alignment unnecessary and reduces the difficulty in extracting desired output

angles.

The 3-Space Sensor devices can return orientation in a number of formats, including as forward and down
vectors, thus making it simple to calculate the angle between two of these devices. However, many surfaces,
such as those of the human body, may not be flat or smooth, and, thus, we must be able to compensate for the
possibility of imperfect sensor placement and alignment. We can use the devices' quaternion orientation
output and quaternion operations to account for the human body's irregularities and obtain more accurate

forward and down vectors.

The Python language source code listed within this document is in three parts and contains cross-references to

the equations used. These listings contain all the code needed to return the angle or angles (in radians and

) 4

degrees) between two 3-Space Sensor devices for a variety of possible joint configurations.

For convenience, this document assumes the use of two 3-Space Sensor Wireless 2.4GHz DSSS devices that
are being communicated via USB. Since calculating different joint angles requires different sensor placement,
this application note uses two possible sensor placement configurations. In the first configuration, the devices
are mounted on the right upper-arm and fore-arm and are positioned to be lined up with the LED lights
towards the shoulder. In the second configuration, one device is mounted in the middle of the back with the
LED light up towards the head and the other device is mounted on the right upper-arm with the LED light
towards the shoulder. Additionally, prior to running the code, both configurations require the sensors to be
properly mounted and the person to be in the standard T-pose, arms straight out to the side of the body and

the palms facing forward. All vectors used are unit vectors and all quaternions used are unit quaternions.

3-Space Sensor Commands Used

There are four 3-Space Sensor commands used in the Python source code.
« Command Ox00: This command gets the filtered tared orientation of the device as a quaternion.
« Command Ox06: This command gets the filtered orientation of the device as a quaternion.

« Command OxOC: This command gets the filtered orientation of the device as two vectors, where the first
vector refers to North and the second refers to Gravity. These vectors are given in the device's reference

frame and not the global reference frame.

« Command Ox61: This command sets the tare orientation of the device to be the same as the supplied

orientation, which should be passed as a quaternion.

2. Types of Joints in the Human Body

There are five types of joints in the human body. 3-Space Sensor devices can be used to detect the motions of

and extract angles from each of these joint types.

2.1 Hinge Joint

A hinge joint acts much like a hinge on a door. They allow for back and forth movement around the axis of the
joints, but do not allow side to side or lateral movements. Hinge joint examples in the human body are the

elbows, knees, and the middle and end joints of the fingers and toes.

©Yost Labs 2/23

Figure 1 - Typical Hinge Joint

2.2 Ball and Socket Joint

A ball and socket joint (or spheroidal joint) is a joint in which a ball-shaped surface of one bone is connected to
a corresponding socket-shaped recess of another bone. This configuration allows for movement around
multiple axes in almost any direction. Ball and socket joint examples in the human body are the hip joints and

the shoulder joints.

Figure 2 - Typical Ball and Socket Joint

2.3 Ellipsoid Joint

An ellipsoid joint (or condyloid joint) allows for angular, bending movements but with limited rotation. So it is
similar to the movements of a ball and socket joint with lesser magnitude. Ellipsoid joint examples in the human

body are the wrist joints and ankle joints.

2.4 Pivot Joint

A pivot joint allows for rotation around a single axis. Pivot joint examples in the human body are the neck and

forearms.

Figure 3 - Typical Pivot Joint

2.5 Saddle Joint
A saddle joint allows for the same movements as the ellipsoid joint. A saddle joint example in the human body

is the carpometacarpal joint of the thumbs.
3. Mathematical and Algorithmic Foundations

3.1 Algorithms for Calculating the Angle Between Two Vectors

Dot (Inner) Product

Using the properties of vectors, the dot product can be used to calculate the angle between two vectors.

vo = (ixo, j¥o, k2o) Egn. 1
vy = (ixy,jyq, kz1) Eqn. 2
Vo V1 = XoX1 + YoV1 T ZpZy Eqgn. 3
=l vo Illl v1 Il cos(8) Eqgn. 4

Now using some algebra we can combine Equation 3 and Equation 4 into an equation defining 6.
Il v Il vy Il cos(8) = xgx1 + Yoy1 + 2021 Eqn. 5
0 = arccos (xoxl + Yoy + ZOZ1> Ean. 6

I I vy I
We can simplify Equation 6 knowing that the lengths of the vectors are 1.

6 = arccosxox; + yoy1 + ZoZ; Eqn. 7

So 0 represents the angle between these two vectors. This algorithm can be applied to the forward and down

©Yost Labs 4/23

vectors received from the 3-Space Sensor devices to calculate the angle between them.

Cross (Outer) Product
Using the properties of vectors, the cross product can be used to calculate a vector perpendicular to two

vectors and the angle between the two vectors.

voXv1 = (i(VoZ1 — 20¥1),J (ZoX1 — X0Z1), k(XoY1 — Yo*1)) Eqn. 8
=l Vo [V1 Il Sll’l(@)n Eqn 9

Where n is a unit vector perpendicular to vg and v;, and where 0 is the angle between them. To calculate 6,
remember that the vectors are unit vectors so the lengths of the vectors are 1. Take note however, that the

cross vector may not have a length of 1 due to 6.

Il voxvy =Nl vo Il vy Il sin(@)n I Eqn. 10
=l vo ll vy Il sin(@) I n I Eqn. 11
sin(6) =l voxvq Il Egn. 12

6 = arcsin|l voXv4 |l Eqn. 13

So B represents the angle between these two vectors. This algorithm can be applied to the forward and down

vectors received from the 3-Space Sensor devices to calculate the angle between them.

3.2 Algorithms for Quaternion Operations

A quaternion, g, is a fourth dimensional vector that can be interpreted as a third dimensional rotation.

q = (ix, jy, kz,w) Eqn. 14
= usin(6/2), cos(6/2) Eqn. 15
= (v,w) Eqn. 16
For Equation 15, u is a vector defined as:
u=_(i,j,k) Eqn. 17

Quaternion Conjugate and Inverse
Finding the conjugate of a quaternion, @’, is easily done by negating the imaginary numbers or the vector part
of the quaternion. And since all quaternions in this application note are unit quaternions, the conjugate of a

quaternion is equal to the inverse of the quaternion, q".

q' =q'=(-ix,—jy,~kz,w) Eqn. 18
Quaternion Multiplication
qo = (vo, W) Eqn. 19
q1 = (v, wy) Eqn. 20
Qoq1 = Wovy + wivg + Vo Xy, Wo + Wy — Vg * V1) Eqn. 21

Quaternion Vector Multiplication
To rotate a vector by a quaternion, we must use pure quaternions, p, which are quaternions with its real part as

O and conjugacy. So any vector can be made into a pure quaternion by putting the vector in the vector part

and O in the real part of a quaternion. The return value of the conjugacy is a pure quaternion, which can be

interpreted as a vector by ignoring the real part.

p=0) Egn. 22
v, = qpq’ Eqgn. 23

3.3 Compensation for the Human Body

As mentioned earlier the human body is not flat nor smooth, and makes perfect placement and alignment of 3-
Space Sensor devices difficult. Thus, a method of correction is needed to accommodate imperfect sensor
alignment issues. To do this we are going to use the device's North and Gravity vectors, specifically the Gravity
vector. The Gravity vector denotes the direction in which the device thinks gravity is pulling on it. If the human
body was flat and smooth, the Gravity vector would line up with one of the Cartesian coordinate axes of the
device's reference frame when in the starting position. So in order to fix this we must calculate the Gravity

vector's offset from the Cartesian coordinate axis we denote as the true gravity vector and correct for it.

6 = arccos(gq - 9) Egn. 24
a=ggxg Eqgn. 25
q, = asin(—0/2),cos(—6/2) Eqn. 26

Where gqis the Gravity vector from the device and g is the gravity vector we want, a is a unit vector that

denotes the axis of rotation from g4 to g, and q, is the rotational offset as a quaternion.

Knowing this, all we need to do is offset g4 so it is lined up with the g. This is done by multiplying the filtered
orientation of the device by @, and set the result as the tare orientation of the device. Note that we must retain

this offset so that we can post-multiply the orientation of the device by it later.

3.4 Calculating the Vectors of a 3-Space Sensor Device

The following are the vectors that will be used to calculate the angles of the joints and the methods used to

calculate these vectors.

Forward Vector

To calculate the forward vector of a device, we are going to use the filtered tared orientation of the device and
a vector in the device's reference frame that will be denoted as the forward vector. Remember the rotational
offset of the device must be applied to the filtered tared orientation before calculating the forward vector of

the device.

Ur = qtqoV Eqn. 27

Where @; is the filtered tared orientation of the device, v¢ is the device's forward vector in global-space, and v is

the unrotated forward vector in the sensor’s space.

Down Vector
To calculate the down vector of a device, we are going to use the filtered tared orientation of the device and a
vector in the device's reference frame that will be denoted as the down vector. Remember the rotational offset

of the device must be applied to the filtered tared orientation before calculating the down vector of the device.

Up = qtqoV Eqn. 28

Where @, is the filtered tared orientation of the device, v is the device's down vector in global-space, and v is

the unrotated down vector in the sensor's space.

Up Vector

To calculate the up vector of a device, a simple negation of the calculated down-vector is all that is necessary.

vy = —Vp Eqn. 29
Right Vector

To calculate the right vector of a device, we are going to use the forward and down vectors of the device and

perform the cross product on them.

Vg = VpXUVp Egn. 30

Where vy is the right vector of the device. Also, note that the forward and down vectors already have the
compensation applied to them so v will also already compensated and that the 3-Space Sensor uses a left-

handed space by default.

3.5 Methods for Calculating the Angle(s) of the Joints
Calculating the Angle of a Hinge Joint

This section will discuss how to calculate the angle of the hinge joint of the right arm using the first setup of
the 3-Space Sensor devices. We are going to use the forward vector of the devices, where vgg is the forward
vector of the first device and vg is the forward vector of the second device. After calculating the forward
vectors, we will also need to calculate the up vector from the device that is being used as the reference device,

in this case the first device. This vector, vyo, will help in determining the sign of the angle.

Now using the forward vectors from the devices and the up vector we can calculate the angle between the

devices.
0 = arccos(Vgq * Vpg) Eqgn. 31
a = Vpy XVpg Eqn. 32
6 = copysign(6, (vyg - a)) Egn. 33

Take note that arccos will always return a positive value, so we must use the dot product of @ and vy to
calculate the sign of 8. The function copysign, is a function that returns the first parameter with the same sign

as the second parameter, so using the dot product is perfect because it ranges from -1to 1.

Calculating the Angle of a Pivot Joint

This section will discuss how to calculate the angle of the pivot joint of the right arm using the first setup of the
3-Space Sensor devices. We are going to use the down vector of the devices, where vpo is the down vector of
the first device and vp; is the down vector of the second device. After calculating the down vectors, we will also

need to calculate the forward vector from the device that is being used as the reference device, in this case the

first device. This vector, veo, will help in determining the sign of the angle.

Now using the down vectors from the devices and the forward vector we can calculate the angle between the

devices.
6 = arccos(vpq - Vpg) Eqn. 34
a = vpXvp, Eqn. 35
6 = copysign(6, (Vg - a)) Egn. 36

Take note that arccos will always return a positive value, so we must use the dot product of @ and vgp to
calculate the sign of 8. The function copysign, is a function that returns the first parameter with the same sign

as the second parameter. Using the dot product is perfect because it ranges from -1to 1.

Calculating the Pitch, Yaw, and Roll Angles of Multi-Axis Joints

This section will discuss how to calculate the pitch, yaw, and roll angles of a multi-axis joint such as the ball and
socket joint of the right arm using the second setup of the 3-Space Sensor devices. We will be using the
method described in [1] and the forward, down, and right vectors of the devices to derive these angles. Where
Veo, Vpo, and vgp are respectively the forward, down, and right vectors of the first device which will be the
reference device and vg, Vp;, Vgy are respectively the forward, down, and right vectors of the second device. The
method takes the orientation of the arm and performs rotations in a precise order to move the arm back to its

initial orientation to derive the pitch, yaw, and roll angles.

Before we start deriving the angles, we must transform v to be on the same transverse plane as vgo. To do this

we will use the right vector of each device and calculate a quaternion that will rotate vg; to line up with vgo.

6 = arccos(vg1 * Vgo) Egn. 37
a = vpyXVpo Eqgn. 38
qro = asin(6/2),cos(6/2) Eqgn. 39

The guaternion ggo, is the rotational offset for the right vectors. Now we can start decomposing the angles.

The first step in decomposing the angles is to undo any rotations on the vertical axis (this will be the yaw
angle). So we will be using the forward vector of each device to calculate the yaw angle. However, we must first

apply the offset gg, to V.

Urr1 = qRoVF1 Eqn. 40

The vector vyg, is the transformed vector of v Now calculate the angle between vz and veo.

Oyaw = arccos(Vrpq - VFo) Eqn. 41

The angle 6,,,, is the yaw angle of the joint. Now we must undo this rotation by calculating a quaternion and
transforming vg again, but this time to be on the same frontal plane as veo. We must also transform vp; to be

used for a later calculation.

a = Vg XVgg Eqn. 42

qo = asin(Byqy,/2),cos(0yqw/2) Eqn. 43
Vrr1 = qoVr1 Eagn. 44
Vrp1 = 99Vp1 Eqgn. 45

The quaternion g, is the rotational offset of 6,,,. Now take note that arccos will always return a positive value,

so we must use the dot product of @ and vgo to calculate the sign of 6.

gyaw = CopySign(eyaw' (a - vgo)) Eqn. 46

The function copysign, is a function that returns the first parameter with the same sign as the second
parameter, so using the dot product is perfect because it ranges from -1to 1. Next we must undo any rotations
on the frontal horizontal axis (this will be the pitch angle). So we will be using vy and v to calculate the pitch

angle.

Ppitch = arccos(Vrpy * Vpo) Eqn. 47

The angle dyitcn, is the pitch angle of the joint. Now we must undo this rotation by calculating a quaternion and

transforming vyp; again, but this time so it will be on the same sagittal plane as vpo.

a = Vrp1 XVpg Eqgn. 48
Ao = asjn(@pitch/z)' COS((ppitch/z) Eqn. 49
Urp1 = 9epVTD1 Eqgn. 50

The quaternion gy is the rotational offset of dy.ch. Now we must use the dot product of @ and vp to calculate

the sign of dyjtch

Ppitch = COPYSIgN(Ppicen, (@ * Vpo)) Eqn. 51

Finally calculate any rotations on the sagittal horizontal axis (this will be the roll angle). We will be using vp;

and vpo to calculate the roll angle.

Yrou = arccos(Vrpq * Vpo) Eqn. 52

The angle U, is the roll angle of the joint. Now we must calculate the sign of (o using the cross product of

vpr and vpo, @, and the dot product of a and vgo.

a = vrp1 XVpo Eqn. 53

Yrou = CopySign(lproll: (a- vFO)) Eqgn. 54

The planes and axes mentioned are described in [2]. And as mentioned in [1], there are two positions in which
the so called “gimbal-lock” will occur. Those positions are when the arm is straight up or straight down, making

6,aw and oy ambiguous.

) 4

4. Software Implementation

The reference Python code in this documentation is written in Python 2.7, uses the internal libraries math and
struct, and the external library, serial, which is provided by PySerial 2.6. A custom library, threespace, has

functions for calculating the angles and performing vector ans quaternion operations.

Communication with the 3-Space Sensor devices is done with PySerial's Serial class. It takes the COM port
name the device was given by the computer when plugged in to connect to it for writing and reading data to

and from the device.

4.1 Connecting to a 3-Space Sensor Device Python Source Code

To connect a 3-Space Sensor devices, you need to know the COM port name the device is on. This can be
found in the Device Manager or in the 3-Space Sensor Software Suite. This COM port name is used for creating

a Serial class object to communicate to the 3-Space Sensor device.

def openPort(com_port):
try:
serial_port = serial.Serial(com_port, timeout=0.1, writeTimeout=0.1, baudrate=115200)
return serial_port
except Exception as ex:
print "Failed to create a serial port on port:'", com_port
raise ex

4.2 Communicating with a 3-Space Sensor Device Python Source Code

The 3-Space Sensor device has a list of commands for getting and setting data. These commands must be sent
to the 3-Space Sensor device through a command packet that must be created, and the serial port must read
the full amount of bytes returned from the 3-Space Sensor device. The command packet is comprised of a
header byte, the command byte(s), input data byte(s), and a checksum byte. The construction of these
command packets and the amount of bytes to be read can be found in the 3-Space Sensor device's User

Manual.

def commandWriteRead(serial_port, command, byte_size=0, data_format='"', input_data=[]):
""" Writes and reads data to and from a serial port given.

Args:
serial_port: A Serial object that is communicating with a 3-Space Sensor device.
command: A char string of one of the 3-Space Sensor device's commands.
byte_size: The number of bytes to read from the serial port.
data_format: The format for which struct is to pack or unpack data.
input_data: Data to be sent to the 3-Space Sensor device.
nnn
data_str = "'
if len(input_data) > 0:
data_str = struct.pack(data_format, *input_data)
command_data = START_BYTE + command + data_str + createCheckSum(command + data_str)

try:
serial_port.write(command_data)

except Exception as ex:
print "There was an error writing command to the port", serial_port.name
raise ex

if byte_size > 0:
try:
data_str = serial_port.read(byte_size)
except Exception as ex:

©Yost Labs 1

print "There was an error reading from the port", serial_port.name
raise ex

output_data = list(struct.unpack(data_format, data_str))
return output_data

return None

4.3 Angle Calculation Python Source Code

The angle calculation function is listed below and returns the angle in radians. It uses the methods stated in the
sections Calculating the Angle of a Hinge Joint and Calculating the Angle of a Hinge Joint.

def calculateAngle(vecO, vecl, vec2=None):
""" Calculates the angle between the two given vectors using the dot product.

Args:
vecO: A unit vector.
vecl: A unit vector.
vec2: A unit vector perpendicular to vecO and vecl.
nnn
The max and min is used to account for possible floating point error
dot_product = max(min(vectorDot(vec®, vecl), 1.0), -1.0)
angle = math.acos(dot_product)

if vec2 is not None:
axis = vectorNormalize(vectorCross(vecO, vecl))
angle = math.copysign(angle, vectorDot(vec2, axis))

return angle

4.4 Pitch, Yaw, and Roll Calculation Python Source Code

The function below is used to calculate the pitch, yaw, and roll angles in radians. It uses the method stated in
section Calculating the Pitch, Yaw, and Roll Angles of Multi-Axis Joints.

def calculatePitchYawRoll(forward®, down®, forwardl, downl):
""" Calculates the pitch, yaw, and roll angles using the forward and down vectors calculated from
two 3-Space Sensor devices.

Args:

forward®: A unit vector that denotes the forward vector of the first 3-Space Sensor device.
down®: A unit vector that denotes the down vector of the first 3-Space Sensor device.
forwardl: A unit vector that denotes the forward vector of the second 3-Space Sensor
device.
downl: A unit vector that denotes the down vector of the second 3-Space Sensor device.

nnn

Assumes the devices' axis directions are default (XYZ) and are positioned or has had its

orientation manipulated so that the Right axis s up

First, calculate the right vector for both devices using the forward and down vectors
right® = vectorNormalize(vectorCross(forward®, down@))
rightl = vectorNormalize(vectorCross(forwardl, downl))

Second, calculate the angle between the right vectors and a vector perpendicular to them
angle = calculateAngle(rightl, righto)
axis = vectorNormalize(vectorCross(rightl, righto))

Third, create a quaternion using the calculated axis and angle that will be used to

transform the forward vector of the second device so that it is on the same horizontal
plane as the forward vector of the first device

quat = createQuaternion(axis, angle)

transformed_forwardl = vectorNormalize(quaternionVectorMultiplication(quat, forwardl))

Fourth, calculate the angle between the transformed forward vector and the forward vector

of the first device
©Yost Labs 11/23

This angle is the yaw
yaw = calculateAngle(transformed_forwardl, forward0)

Fifth, calculate a vector perpendicular to the transformed forward vector and the forward vector
of the first device
axis = vectorNormalize(vectorCross(transformed_forwardl, forwardo))

Sixth, create a quaternion using the calculated axis and yaw angle that will be used to

transform the forward vector of the second device so that it is on the same vertical plane
as the forward vector of the first device and to transform the down vector of the second
device to be used in a later calculation

quat = createQuaternion(axis, yaw)

transformed_forwardl = vectorNormalize(quaternionVectorMultiplication(quat, forwardl))
transformed_downl = vectorNormalize(quaternionVectorMultiplication(quat, downl))

Set the sign of yaw using the axis calculated and the right vector of the first device
yaw = math.copysign(yaw, vectorDot(axis, right0))

Seventh, calculate the angle between the transformed forward vector and the forward vector of
the first device

This angle is the pitch

pitch = calculateAngle(transformed_forwardl, forwardo)

Eighth, calculate a vector perpendicular to the transformed forward vector
and the forward vector of the first device
axis = vectorNormalize(vectorCross(transformed_forwardl, forwardo))

Ninth, create a quaternion using the calculated axis and pitch angle that will

be used to transform the transformed down vector so that it is on the same vertical plane
as the down vector of the first device

quat = createQuaternion(axis, pitch)

transformed_downl = vectorNormalize(quaternionVectorMultiplication(quat, transformed_downl))

Set the sign of pitch using the axis calculated and the down vector of the first device
pitch = math.copysign(pitch, vectorDot(axis, down®))

Tenth, calculate the angle between the transformed down vector and the down vector of the first
device

This angle is the roll

roll = calculateAngle(transformed_downl, down@)

axis = vectorNormalize(vectorCross(transformed_downl, down®))

Set the sign of roll using the axis calculated and the forward vector of the first device
roll = math.copysign(roll, vectorDot(axis, forward0))

return [pitch, yaw, roll]

4.5 Compensation Offset Python Source Code

The function below is used to calculate the offset of the 3-Space Sensor device on the human body. The
function returns the offset orientation as a quaternion.

def offsetQuaternion(serial_port, gravity=[-1.0, 0.0, 0.0], init_offset=None):
""" Calculates the offset of the 3-Space Sensor device on the human body.

Args:
serial_port: A Serial object that is communicating with a 3-Space Sensor device.
gravity: A unit vector that denotes the gravity direction the 3-Space Sensor device should
be reading.
init_offset: A unit quaternion the denotes a rotational offset for a 3-Space Sensor device.
nnn
First, find what the device reads as the gravity direction using the read North Gravity command
The command returns 6 floats, the first 3 make the North vector and the last 3 make the Gravity
vector
north_gravity = commandWriteRead(serial_port, READ_NORTH_GRAVITY_COMMAND,

byte_size=24, data_format='>ffffff')

sensor_gravity = north_gravity[3:]

Second, read the current filtered orientation as a quaternion from the device using the read
Filtered Quaternion command
filt_data = commandWriteRead(serial_port, READ_FILT_QUAT_COMMAND, byte_size=16,

data_format="'>ffff")

Third, using the gravity vector given and the Gravity vector from the device,
calculate the angle between them and a vector perpendicular to them

angle = calculateAngle(sensor_gravity, gravity)

axis = vectorNormalize(vectorCross(sensor_gravity, gravity))

Fourth, create a quaternion using the calculated axis and angle that will be used to offset the
filtered quaternion of the device so the gravity vectors will line up
Also apply the initial offset if any
offset = createQuaternion(axis, -angle)
if dnit_offset is not None:
offset = quaternionMultiplication(offset, init_offset)
tare_data = quaternionMultiplication(filt_data, offset)

Fifth, set the offset filtered quaternion as the tare orientation for the device using the set

Tare

Quaternion command
commandWriteRead (serial_port, SET_TARE_QUAT_COMMAND, data_format='>ffff',

input_data=tare_data)

The calculated offset quaternion is returned because it needs to be applied
to the filtered tared quaternion received from the device
return offset

4.6 Full Python Source Code

Full Source Code of the Custom Library

#!/usr/bin/env python2.7

##
##
##
##
##
##
##

Script Name: threespace.py

Application Note: Calculating Angles Between Two YOST LABS 3-Space Sensor Devices using Two Vectors
on a Human Body

Description: Helper functions for calculating the angles between two YOST LABS 3-Space Sensor

devices 1in

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Python 2.7
Website: ww.yostlabs.com

Copyright: Copyright (C) 2017 Yost Labs, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
associated documentation files (the "Software"), to deal in the Software without, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import serial
import struct

A4

import math

Static Variables

START_BYTE = chr (0xf7)
READ_FILT_TARED_QUAT_COMMAND = chr (0x00)
READ_FILT_QUAT_COMMAND = chr (0x06)
READ_NORTH_GRAVITY_COMMAND = chr(0x0c)

SET_

def

def

def

def

def

TARE_QUAT_COMMAND = chr (0x61)

vectorCross(vecO, vecl):
""" performs the cross product on the two given vectors.

Args:
vecO: A unit vector.
vecl: A unit vector.
nnn
X0, y0, z0 = vecO
x1l, yl, z1 = vecl

return [y® x z1 - z0 * yl, z0 x x1 - x0 *x z1, x0 x yl - y0 * x1]

vectorDot(vecO, vecl):
""" performs the dot product on the two given vectors.

Args:
vecO: A unit vector.
vecl: A unit vector.
nnn
X0, y0, z0 = vecO
x1l, yl, z1 = vecl

return x0 * x1 + y0 x yl + z0 *x z1

vectorLength(vec):
""" Calculates the length of a vector given.

Args:

vec: A vector.
nnn

return (vectorDot(vec, vec) *x 0.5)

vectorNormalize(vec):
""" Normalizes the vector given.

Args:
vec: A vector.
nnn
length = vectorlLength(vec)
X, Y, Z = vec

return [x / length, y / length, z / length]

createQuaternion(vec, angle):
""" Creates a quaternion from an axis and an angle.

Args:
vec: A unit vector.
angle: An angle 1in radians.

Quaternions represent half the angle in complex space so the angle must be halved

X, Y, Z = vec
tmp_quat = [0.0] * 4

tmp_quat[0] = x * math.sin(angle / 2.0)
tmp_quat[1] = y * math.sin(angle / 2.0)
tmp_quat[2] = z * math.sin(angle / 2.0)
tmp_quat[3] = math.cos(angle / 2.0)

def

def

def

Normalize the quaternion

ax, qy, 9z, qw = tmp_quat
length = (gx * gx + qy * qy + gz * qz + gw * gw) ** 0.5

tmp_quat[0] /= length
tmp_quat[1] /= length
tmp_quat[2] /= length
tmp_quat[3] /= length

return tmp_quat

quaternionMultiplication(quat®, quatl):
""" performs quaternion multiplication on the two given quaternions.

Args:
quat®: A unit quaternion.
quatl: A unit quaternion.
nnn
X0, y0, z0, wO = quat®
x1l, yl, z1, wl = quatl

X_Cross, y_cross, z_cross = vectorCross([x0, y0, z0], [x1, yl, zl1l])
w_new = w® * wl - vectorDot([x0, y®, z0], [x1, yl, zl])

X_new = x1 * w0 X0 *x wl + X_cross

y_new = yl * w0 y0 x wl + y_cross

Z_new = z1 * w0 z0 x wl + z_cross

+ o+ o+

return [x_new, y_new, z_new, w_new]

quaternionVectorMultiplication(quat, vec):
""" Rotates the given vector by the given quaternion.

Args:

quat: A unit quaternion.

vec: A unit vector.
nnn
Procedure: quat * vec_quat x -quat
qx, qy, 9z, qw = quat
VX, Vy, VZ = vec
vw = 0.
neg_gx = —-gx
neg_qy = -qy
neg_qz = -qz
neg_qw = qw

o

First Multiply

X_cross, y_cross, z_cross = vectorCross([gx, qy, qz], vec)
w_new = gw * vw - vectorDot([gx, qy, gqz], vec)

X_New = VX * gw + gX * Vw + X_Cross

y_new = vy * gqw + qy * Vw + y_Cross

Z_new = vz * gqw + gZ * VW + Z_Cross

Second Multiply

X_Cross, y_cross, z_cross = vectorCross([x_new, y_new, z_new], [neg_gx, neg_qy, neg_qz])
w = w_new * neg_qw - vectorDot([x_new, y_new, z_new], [neg_gx, neg_qy, neg_qz])

X = neg_gx * w_new + X_New * neg_gw + X_Cross

y = neg_qy * w_new + y_new * neg_gqw + y_Cross

Z = neg_qz * w_new + Z_new * neg_gw + Z_Cross

return [x, y, z]

calculateAngle(vecO, vecl, vec2=None):
""" Calculates the angle between the two given vectors using the dot product.

Args:
vecO: A unit vector.

def

vecl: A unit vector.
vec2: A unit vector perpendicular to vecO® and vecl.
nnn
The max and min is used to account for possible floating point error
dot_product = max(min(vectorDot(vec®, vecl), 1.0), -1.0)
angle = math.acos(dot_product)

if vec2 is not None:
axis = vectorNormalize(vectorCross(vecO, vecl))
angle = math.copysign(angle, vectorDot(vec2, axis))

return angle

calculatePitchYawRoll(forward®, down®, forwardl, downl):
""" Calculates the pitch, yaw, and roll angles using the forward and down vectors calculated from
two 3-Space Sensor devices.

Args:

forward®: A unit vector that denotes the forward vector of the first 3-Space Sensor device.
down®: A unit vector that denotes the down vector of the first 3-Space Sensor device.
forwardl: A unit vector that denotes the forward vector of the second 3-Space Sensor
device.
downl: A unit vector that denotes the down vector of the second 3-Space Sensor device.

nnn

Assumes the devices' axis directions are default (XYZ) and are positioned or has had 1its

orientation manipulated so that the Right axis is up

First, calculate the right vector for both devices using the forward and down vectors
right® = vectorNormalize(vectorCross(forward®, down@))
rightl = vectorNormalize(vectorCross(forwardl, downl))

Second, calculate the angle between the right vectors and a vector perpendicular to them
angle = calculateAngle(rightl, righto)
axis = vectorNormalize(vectorCross(rightl, righto))

Third, create a quaternion using the calculated axis and angle that will be used

to transform the forward vector of the second device so that it is on the same horizontal
plane as the forward vector of the first device

quat = createQuaternion(axis, angle)

transformed_forwardl = vectorNormalize(quaternionVectorMultiplication(quat, forwardl))

Fourth, calculate the angle between the transformed forward vector and the forward vector
of the first device

This angle is the yaw

yaw = calculateAngle(transformed_forwardl, forward0)

Fifth, calculate a vector perpendicular to the transformed forward vector and the forward vector
of the first device
axis = vectorNormalize(vectorCross(transformed_forwardl, forwardo))

Sixth, create a quaternion using the calculated axis and yaw angle that will be used

to transform the forward vector of the second device so that it is on the same vertical
plane as the forward vector of the first device and to transform the down vector of the
second device to be used in a later calculation

quat = createQuaternion(axis, yaw)

transformed_forwardl = vectorNormalize(quaternionVectorMultiplication(quat, forwardl))
transformed_downl = vectorNormalize(quaternionVectorMultiplication(quat, downl))

Set the sign of yaw using the axis calculated and the right vector of the first device
yaw = math.copysign(yaw, vectorDot(axis, right0))

Seventh, calculate the angle between the transformed forward vector and the forward vector of
the first device

This angle is the pitch

pitch = calculateAngle(transformed_forwardl, forwardo)

Eighth, calculate a vector perpendicular to the transformed forward vector

def

def

and the forward vector of the first device
axis = vectorNormalize(vectorCross(transformed_forwardl, forwardo))

Ninth, create a quaternion using the calculated axis and pitch angle that

will be used to transform the transformed down vector so that it is on the same

vertical plane as the down vector of the first device

quat = createQuaternion(axis, pitch)

transformed_downl = vectorNormalize(quaternionVectorMultiplication(quat, transformed_downl))

Set the sign of pitch using the axis calculated and the down vector of the first device
pitch = math.copysign(pitch, vectorDot(axis, down®))

Tenth, calculate the angle between the transformed down vector and the down vector
of the first device

This angle is the roll

roll = calculateAngle(transformed_downl, down@)

axis = vectorNormalize(vectorCross(transformed_downl, down®))

Set the sign of roll using the axis calculated and the forward vector of the first device
roll = math.copysign(roll, vectorDot(axis, forward0))

return [pitch, yaw, roll]

createCheckSum(char_data):
""" Calculates the checksum for the given data.

Args:
char_data: A string of data.
nnn
checksum = 0
for byte in char_data:
checksum += ord(byte)
return chr(checksum % 256)

offsetQuaternion(serial_port, gravity=[-1.0, 0.0, 0.0], init_offset=None):
""" Calculates the offset of the 3-Space Sensor device on the human body.

Args:
serial_port: A Serial object that is communicating with a 3-Space Sensor device.
gravity: A unit vector that denotes the gravity direction the 3-Space Sensor device should
be reading.
init_offset: A unit quaternion the denotes a rotational offset for a 3-Space Sensor device.
nnn
First, find what the device reads as the gravity direction using the read North Gravity command
The command returns 6 floats, the first 3 make the North vector and the last 3 make the Gravity
vector
north_gravity = commandWriteRead(serial_port, READ_NORTH_GRAVITY_COMMAND,
byte_size=24, data_format='>ffffff')
sensor_gravity = north_gravity[3:]

Second, read the current filtered orientation as a quaternion from the device using the read
Filtered Quaternion command
filt_data = commandWriteRead(serial_port, READ_FILT_QUAT_COMMAND, byte_size=16,data_format='>ffff')

Third, using the gravity vector given and the Gravity vector from the device,
calculate the angle between them and a vector perpendicular to them

angle = calculateAngle(sensor_gravity, gravity)

axis = vectorNormalize(vectorCross(sensor_gravity, gravity))

Fourth, create a quaternion using the calculated axis and angle that will be used to offset the
filtered quaternion of the device so the gravity vectors will line up
Also apply the initial offset if any
offset = createQuaternion(axis, -angle)
if dnit_offset is not None:
offset = quaternionMultiplication(offset, init_offset)
tare_data = quaternionMultiplication(filt_data, offset)

©Yost Labs 17/23

def

def

def

def

Fifth, set the offset filtered quaternion as the tare orientation for the device
using the set Tare Quaternion command
commandWriteRead(serial_port, SET_TARE_QUAT_COMMAND, data_format='>ffff', dinput_data=tare_data)

The calculated offset quaternion is returned because it needs to be applied
to the filtered tared quaternion received from the device
return offset

openPort(com_port):
try:
serial_port = serial.Serial(com_port, timeout=0.1, writeTimeout=0.1, baudrate=115200)
return serial_port
except Exception as ex:
print "Failed to create a serial port on port:", com_port
raise ex

closePort(serial_port):

try:
serial_port.close()

except Exception as ex:
print "Failed to close the port:", serial_port.name
raise ex

commandWriteRead(serial_port, command, byte_size=0, data_format='"', dinput_data=[]):
""" Writes and reads data to and from a serial port given.

Args:
serial_port: A Serial object that is communicating with a 3-Space Sensor device.
command: A char string of one of the 3-Space Sensor device's commands.
byte_size: The number of bytes to read from the serial port.
data_format: The format for which struct is to pack or unpack data.
input_data: Data to be sent to the 3-Space Sensor device.
nnn
data_str = "'
if len(input_data) > 0:
data_str = struct.pack(data_format, xinput_data)
command_data = START_BYTE + command + data_str + createCheckSum(command + data_str)

try:
serial_port.write(command_data)

except Exception as ex:
print "There was an error writing command to the port", serial_port.name
raise ex

if byte_size > 0:
try:
data_str = serial_port.read(byte_size)
except Exception as ex:
print "There was an error reading from the port", serial_port.name
raise ex

output_data = list(struct.unpack(data_format, data_str))
return output_data

return None

calculateDeviceVector(serial_port, vec, offset):
""" Calculates a vector in a 3-Space Sensor device's reference frame.

Args:
serial_port: A Serial object that is communicating with a 3-Space Sensor device.
vec: A unit vector.
offset: A unit quaternion that denotes the offset of the 3-Space Sensor device.
nnn
Get the filtered tared orientation of the device
data = commandWriteRead(serial_port, READ_FILT_TARED_QUAT_COMMAND, byte_size=16,

A4

data_format="'>ffff")

Apply the offset for the device
quat = quaternionMultiplication(data, offset)

Calculate a vector for the device with its orientation
vector = quaternionVectorMultiplication(quat, vec)

return vector

4.7 Full Source Code for Calculating the Angle of a Hinge Joint

#!/usr/bin/env python2.7

##

Script Name: hinge.py

##

Application Note: Calculating Angles Between Two YOST LABS 3-Space Sensor Devices using Two Vectors
on a Human Body

##

Description: Calculates the hinge angle between two YOST LABS 3-Space Sensor devices 1in Python 2.7
##

Website: ww.yostlabs.com

##

Copyright: Copyright (C) 2017 Yost Labs, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

associated documentation files (the "Software"), to deal in the Software without, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software 1is furnished

to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

##

import time
import threespace

Change the COM port names as needed
First device

serial_port® = threespace.openPort("COM10")

Second device
serial_portl = threespace.openPort("COM11")

print "To quit, hold down \"Ctrl\" key and press \"C\" key"

print "Get into the starting position."

time.sleep(3)

print "Please hold for 10 seconds to compensate for device positioning."

time.sleep(5)

Calculate the rotational offset of the compensation for the the first device
offset® = threespace.offsetQuaternion(serial_port0)

Calculate the rotational offset of the compensation for the the second device
offsetl = threespace.offsetQuaternion(serial_portl)

time.sleep(2)

A

while True:
Calculate the forward vector of the first device
The initial forward vector to use depends on the orientation and axis direction of the device
The resultant vector must be heading up the arm
forward® = threespace.calculateDeviceVector(serial_port0, [0.0, 0.0, 1.0], offsetO)

Calculate the forward vector of the second device

The initial forward vector to use depends on the orientation and axis direction of the device
The resultant vector must be heading up the arm

forwardl = threespace.calculateDeviceVector(serial_portl, [0.0, 0.0, 1.0], offsetl)

Calculate a vector perpendicular to the forward vectors and parallel to the axis
of rotation to use for determining the sign of the angle

Using the first device's orientation will give the best results

The initial vector to use depends on the initial forward vector

up@ = threespace.calculateDeviceVector(serial_port0, [0.0, 1.0, 0.0], offset0)

Calculate the angle between the two devices

angle = threespace.calculateAngle(forwardl, forward®, upo®)

Print as radians and degrees

print "Hinge"

print "Radians: %0.4f\tDegrees: %0.4f" % (angle, threespace.math.degrees(angle))

Close the serial ports
threespace.closePort(serial_port0)
threespace.closePort(serial_portl)

4.8 Full Source Code for Calculating the Angle of a Pivot Joint

#!/usr/bin/env python2.7

##

Script Name: pivot.py

##

Application Note: Calculating Angles Between Two YOST LABS 3-Space Sensor Devices using Two Vectors
on a Human Body

##

Description: Calculates the pivot angle between two YOST LABS 3-Space Sensor devices 1in Python 2.7
##

Website: ww.yostlabs.com

##

Copyright: Copyright (C) 2017 Yost Labs, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

associated documentation files (the "Software"), to deal in the Software without, including

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software is furnished

to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

##

import time
import threespace

Change the COM port names as needed
First device

serial_port® = threespace.openPort("COM10")

Second device

A

serial_portl = threespace.openPort("COM11")

print "To quit, hold down \"Ctrl\" key and press \"C\" key"
print "M-----m o
print "Get into the starting position."

time.sleep(3)
print "Please hold for 10 seconds to compensate for device positioning."
time.sleep(5)

Calculate the rotational offset of the compensation for the the first device
offset® = threespace.offsetQuaternion(serial_porto)

Calculate the rotational offset of the compensation for the the second device
offsetl = threespace.offsetQuaternion(serial_portl)

time.sleep(2)

while True:
Calculate the down vector of the first device with its orientation
The initial down vector to use depends on the orientation and axis direction of the device
The resultant vector must be heading into the arm
down® = threespace.calculateDeviceVector(serial_port0, [0.0, -1.0, 0.0], offset0)

Calculate the down vector of the second device with its orientation

The initial down vector to use depends on the orientation and axis direction of the device
The resultant vector must be heading into the arm

downl = threespace.calculateDeviceVector(serial_portl, [0.0, -1.0, 0.0], offsetl)

Calculate a vector perpendicular to the down vectors and parallel to the axis of rotation
to use for determining the sign of the angle

Using the first device's orientation will give the best results

The 1dinitial vector to use depends on the initial down vector

forward® = threespace.calculateDeviceVector(serial_port0, [0.0, 0.0, 1.0], offset0)

Calculate the angle between the two devices

angle = threespace.calculateAngle(downl, down®, forwardo)

Print as radians and degrees

print "Pivot"

print "Radians: %0.4f\tDegrees: %0.4f" % (angle, threespace.math.degrees(angle))

Close the serial ports
threespace.closePort(serial_port0)
threespace.closePort(serial_portl)

4.9 Full Source Code for Calculating the Pitch, Yaw,
and Roll Angles of a Multi-Axis Joint

!'/usr/bin/env python2.7

##

Script Name: multi_axis.py

##

Application Note: Calculating Angles Between Two YOST LABS 3-Space Sensor Devices using Two Vectors
on a Human Body

##

Description: Calculates the pitch, yaw, and roll angles between two YOST LABS 3-Space Sensor devices
in

Python 2.7
##

Website: ww.yostlabs.com
##

Copyright: Copyright (C) 2017 Yost Labs, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
associated documentation files (the "Software"), to deal in the Software without, including

©Yost Labs 21/23

A

without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software 1is furnished
to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

##

import time
import threespace

Change the COM port names as needed
First device
serial_port® = threespace.openPort("COM10")

Second device
serial_portl = threespace.openPort("COM11")

print "To quit, hold down \"Ctrl\" key and press \"C\" key"
print M---mm e "
print "Get into the starting position."

time.sleep(3)
print "Please hold for 10 seconds to compensate for device positioning."
time.sleep(5)

Create a quaternion to be used to orient the first device to the same orientational space
as the second device
quat = threespace.createQuaternion([0.0, 1.0, 0.0], -threespace.math.pi / 2.0)

Calculate the rotational offset of the compensation for the the first device
offset® = threespace.offsetQuaternion(serial_port0, [0.0, 0.0, -1.0], quat)

Calculate the rotational offset of the compensation for the the second device
offsetl = threespace.offsetQuaternion(serial_portl)

time.sleep(2)

while True:
Calculate the forward and down vectors of the first device with its orientation
The initial forward vector to use depends on the orientation and axis direction of the device
The resultant vector must be heading to the left of the body
forward® = threespace.calculateDeviceVector(serial_port0, [0.0, 0.0, 1.0], offset0)
The initial down vector to use depends on the orientation and axis direction of the device
The resultant vector must be heading into the body
down® = threespace.calculateDeviceVector(serial_port0, [0.0, -1.0, 0.0], offset0)

Calculate the forward and down vectors of the second device with its orientation

The initial forward vector to use depends on the orientation and axis direction of the device
The resultant vector must be heading up the arm

forwardl = threespace.calculateDeviceVector(serial_portl, [0.0, 0.0, 1.0], offsetl)

The initial down vector to use depends on the orientation and axis direction of the device

The resultant vector must be heading into the arm

downl = threespace.calculateDeviceVector(serial_portl, [0.0, -1.0, 0.0], offsetl)

Calculate the Pitch Yaw and Roll between the two devices

angle_list = threespace.calculatePitchYawRoll(forward®, down®, forwardl, downl)

Print as radians and degrees

print "Pitch"

print "Radians: %0.4f\tDegrees: %0.4f" % (angle_list[0], threespace.math.degrees(angle_list[0]))
print "====================---------ooooooooooooooc

print "Yaw"

print "Radians: %0.4f\tDegrees: %0.4f" % (angle_list[1], threespace.math.degrees(angle_list[1]))

©Yost Labs 22

pr-int W= ==c==

print "Roll"

print "Radians: %0.4f\tDegrees: %0.4f" % (angle_list[2], threespace.math.degrees(angle_list[2]))

print "=========================

Close the serdial ports

threespace.closePort(serial_port0)
threespace.closePort(serial_portl)

5. References

1. Doorenbosch, Harlaar, and Veeger. The globe system: An unambiguous description of shoulder

positions in daily life movements

http://www.rehab.research.va.gov/jour/03/40/2/PDF/doorenbosch.pdf

2. Understanding Exercise - Planes, Axes and Movement

http://www.todaysfitnesstrainer.com/understanding-exercise-planes-axes-movement/

3. The Joints

http://www.shockfamily.net/skeleton/JOINTS.HTML

4. Five Different Types of Joints

http://www.livestrong.com/article/115889-five-different-types-joints/

5. Open, Sesamoid: Types of Joints

http://science.howstuffworks.com/life/human-biology/bonell.htm

2 YOST:

YOST LABS
630 Second Street
Portsmouth Ohio 45662, USA

Phone: 740.876.4936
info@yostlabs.com
yostlabs.com

Made in USA. Patents:
8498827, 8682610,
9255799, 9354058.
Additional patents pending.

About Yost Labs, Inc. We are a fast growing private company based in historic
Portsmouth, Ohio. With over a decade of experience in low-latency inertial sensor
innovation, we enable motion tracking in many of today’s and tomorrow’s most
exciting products. We make virtual reality interactive. We stabilize drones and
navigate autonomous cars. We measure human motion for athletic performance
and rehabilitation. We are dedicated to supporting you and your team—providing
expert advice and integration consulting for the world’s fastest inertial motion
sensor technology.

Yost Labs’ innovation has been recognized with numerous patents with
additional patents pending. Our customers and value-added resellers include the
US Navy, US Air Force, NASA, US Army Corps of Engineers and over 1,000 leading

technology firms and academic institutions around the world.

©Yost Labs 23

