
© 2005-2016 YOST LABS 1

AN2016.01
Using the Prio API for
wireless streaming with
a PrioVRTM Basestation

Nick Leyder
Lead Software Engineer, Yost Labs

Introduction
The PrioVR Suit is a full-body suit that tracks motion using

19 PrioVR Sensors and a central PrioVR Hub. The PrioVR

Sensors are inertial measurement units that give accurate

drift-free absolute orientations of the user’s body. The

PrioVR Hub collects the data from the PrioVR Sensors, and

sends it wirelessly to the PrioVR Basestation. The PrioVR

Basestation communicates the received data to the host

computer via USB (shown in Figure 1).

The purpose of this document is to provide an overview

of streaming data from a PrioVR Suit using the PrioVR

Basestation. The example code below illustrates the use of

the Prio API to read the global orientations from the PrioVR

Suit and print them to the screen.

Description
In order to achieve wireless streaming, the Prio API must:

1.	 Find the PrioVR Basestation connected to the computer

2.	Find the PrioVR Hub connected to the Basestation

3.	Start streaming the data

4.	Read the data

5.	Stop streaming and deinitialize the Prio API to allow for

later use.

Figure 1

Host Device

PrioVR Hub

PrioVR Basestation

YOST LABS
630 Second Street
Portsmouth Ohio 45662, USA

Phone: 740.876.4936
info@yostlabs.com
yostlabs.com

© 2005-2016 YOST LABS 2

Step 1: Creating the PrioVR Basestation
The first step in using a PrioVR suit through the Prio API is to create a PrioVR

Basestation to work with.

// An unique identifier used by the PrioVR API to identify the PrioVR BaseStation
prio_device_id bs_device;

// An unique identifier used by the PrioVR API to identify the PrioVR Hub
prio_device_id hub_device;

// The communication port of a PrioVR Basestation
prio_ComPort port;
// Allocate a char array of 64 chars for the port name
port.port_name = new char[64];

// An index into the array of communication ports found by the Prio API
uint8_t com_offset = 0;

// Find all of the communication ports that corresponded to PrioVR Basestations
prio_findPorts(PRIO_BS);

// Get the communication port at the index of com_offset
prio_getPort(&port.port_name, com_offset , &port.device_type);

// Create a PrioVR Basestation object from the communication port
prio_createBaseStation(port.port_name &bs_device);

This code creates variables to store identifiers for PrioVR Basestation, PrioVR

Hub, the communication port of the PrioVR Basestation, and an offset into

the found communication ports.

After creating these variables, the code finds and creates a PrioVR

Basestation connected to the host PC at the given offset in the

communication ports (com_offset), and assigns its identifier to bs_device. If

none is present, bs_device will be set to an error value. This identifier will be

passed to further functions that reference the PrioVR Basestation.

© 2005-2016 YOST LABS 3

Step 2: Getting the PrioVR Hub
With the PrioVR Basestation created it is now time to find the paired

PrioVR Hub.

// Get the PrioVR Hub paired to the PrioVR Basestation
prio_bs_getWirelessHub(bs_device, &hub_device);

This code will find a PrioVR Hub that has been paired with the PrioVR

Basestation, and assigns its identifier to hub_device. If none is present,

hub_device will be set to an error value. This identifier will be passed to

further functions that reference the PrioVR Hub.

Step 3: Start Streaming
With the PrioVR Basestation created and it’s PrioVR Hub found, it is now

time to specify what data to gather and to instruct the PrioVR Basestation

to begin gathering that data from the PrioVR suit.

// This starts streaming untared orientations, at an interval of 10000 mircoseconds
// forever
prio_bs_startStreaming(bs_device, PRIO_STREAM_UNTARED_ORIENTATION_AS_QUATERNION, 10000,
PRIO_STREAM_DURATION_INFINITE);

This code will start streaming untared quaternions. The other options are:

1. PRIO_STREAM_TARED_ORIENTATION_AS_QUATERNION
2. PRIO_STREAM_ALL_CORRECTED_COMPONENT_SENSOR_DATA
3. PRIO_STREAM_CORRECTED_GYRO_RATE
4. PRIO_STREAM_CORRECTED_ACCELEROMETER_VECTOR
5. PRIO_STREAM_CORRECTED_MAGNETOMETER_VECTOR
6. PRIO_STREAM_ALL_RAW_COMPONENT_SENSOR_DATA
7. PRIO_STREAM_RAW_GYROSCOPE_RATE
8. PRIO_STREAM_RAW_ACCELEROMETER_DATA
9. PRIO_STREAM_RAW_MAGNETOMETER_DATA

Up to 512 bits in any combination of up to 8 options can be streamed

simultaneously.

© 2005-2016 YOST LABS 4

Step 4: Read the Data
At this point, orientation data will be automatically obtained from the PrioVR

Basestation at a regular interval. All that remains is to read the data, and print

it to the screen.

// For as long as you need suit data for
while(true) {
	
	 // The header data from the packet
	 prio_StreamHeaderData header_data;
	
	 // The packer data from the packet, sized for 19 sensors
	 U8 packet_data[304];
	
	 // Retrieve the latest packet from the PrioVR Hub
	 prio_hub_getLastStreamingPacket(hub_device, &header_data, &packet_data[0]);
	
	 // A float array for storing 19 quaternions
	 float packet_quats[76];
	
	 // Copy the packet data into the float array
	 memcpy(packet_quats, packet_data, 304);

	 // Loop until all of the packet quaternions have been printed
	 int i=0;
	 do {
	
		 // Printing out the sensor quaternions
		 printf(“(%f,%f,%f,%f)”,packet_quats[i],packet_quats[i+1],packet_quats[i+2],packet_quats[i+3]);
		
		 // Increment the quaternion array by the 4 consumed data
		 i += 4;
		
	 } while(i < 76)
	
}

The “prio_StreamHeaderData “ structure used here is a container for two

uint8s that store the battery level, the state of the PrioVR Hub buttons,

and two prio_Joystick that hold the joystick data. The “prio_JoystickData”

structure is a container for four uint8s that hold the x_axis, y_axis, trigger

state, and button state.

The “packet_data” used here is an array that holds all of the data streamed

by the PrioVR Hub for 19 sensors. This data is in an array where a sensor’s

quaternion data is 16 spots in the array ([0-15],[16-31]...[287-303]). The code

then converts that data into a float array for ease of use, and prints the data

to the user. A quaternion can be converted to any other major orientation

format, including rotation matrix, axis-angle, or Euler angles.

© 2005-2016 YOST LABS 5

Step 5: Finish Up
Before the program ends, streaming must be stopped and the Prio API must be

shut down.

This is accomplished with the functions below.

// Stops the streaming of the PrioVR Basestation and PrioVR Hub
prio_bs_stopStreaming(bs_device);
// Deinitialize the Prio API
prio_deinitAPI();

Complete Example

#include <stdio.h>
#include <time.h>
#include “prio_api_export.h”

#define PRIO_STREAM_DURATION_INFINITE 0xffffffff

void main() {

	 // An unique identifier used by the PrioVR API to identify the PrioVR BaseStation
	 prio_device_id bs_device;
	
	 // An unique identifier used by the PrioVR API to identify the PrioVR Hub
	 prio_device_id hub_device;
	
	 // The communication port of a PrioVR Basestation
	 prio_ComPort port;

	 // Allocate a char array of 64 chars for the port name
	 port.port_name = new char[64];
	
	 // An index into the array of communication ports found by the Prio API
	 uint8_t com_offset = 0;
	
	 // Find all of the communication ports that correspond to PrioVR Basestations
	 prio_findPorts(PRIO_BS);
	
	 // Get the communication port at the index of com_offset
	 prio_getPort(&port.port_name, com_offset , &port.device_type);
	
	 // Create a PrioVR Basestation object from the communication port
	 prio_createBaseStation(port.port_name &bs_device);
	
	 // Get the PrioVR Hub paired to the PrioVR Basestation
	 prio_bs_getWirelessHub(bs_device, &hub_device);
	
	 // This starts streaming untared orientations, at an interval of 10000 mircoseconds forever
	 prio_bs_startStreaming(bs_device, PRIO_STREAM_UNTARED_ORIENTATION_AS_QUATERNION, 10000,
	 PRIO_STREAM_DURATION_INFINITE);
	
	 // For as long as you need suit data for
	 while(true) {

© 2005-2016 YOST LABS 6

About Yost Labs, Inc. We are a fast growing private company based in historic

Portsmouth, Ohio. With over a decade of experience in low-latency inertial sensor

innovation, we enable motion tracking in many of today’s and tomorrow’s most

exciting products. We make virtual reality interactive. We stabilize drones and

navigate autonomous cars. We measure human motion for athletic performance

and rehabilitation. We are dedicated to supporting you and your team—providing

expert advice and integration consulting for the world’s fastest inertial motion

sensor technology.

 Yost Labs’ innovation has been recognized with numerous patents with

additional patents pending. Our customers and value-added resellers include the

US Navy, US Air Force, NASA, US Army Corps of Engineers and over 1,000 leading

technology fi rms and academic institutions around the world.

YOST LABS
630 Second Street
Portsmouth Ohio 45662, USA

Phone: 740.876.4936
info@yostlabs.com
yostlabs.com

Made in USA. Patents:
8498827, 8682610,
9255799, 9354058.
Additional patents pending.

		
		 // The header data from the packet
		 prio_StreamHeaderData header_data;
	
		 // The packer data from the packet, sized for 19 sensors
		 U8 packet_data[304];
		
		 // Retrieve the latest packet from the PrioVR Hub
		 prio_hub_getLastStreamingPacket(hub_device, &header_data, &packet_data[0]);
		
		 // A float array for storing 19 quaternions
		 float packet_quats[76];
		
		 // Copy the packet data into the float array
		 memcpy(packet_quats, packet_data, 304);
		
		 // Loop until all of the packet quaternions have been printed
		 int i=0;
		 do {
			
			 // Printing out the sensor quaternions
			 printf(“(%f,%f,%f,%f)”,packet_quats[i],packet_quats[i+1],packet_quats[i+2],
			 packet_quats[i+3]);
			
			 // Increment the quaternion array by the 4 consumed data
			 i += 4;
			
		 } while(i < 76)
	 }
	
	 // Stops the streaming of the PrioVR Basestation and PrioVR Hub
	 prio_bs_stopStreaming(bs_device);
	
	 // Deinitialize the Prio API
	 prio_deinitAPI();

}

