LABS

2 YOST

YOST LABS
630 Second Street
Portsmouth Ohio 45662, USA

Phone: 740.876.4936
info@yostlabs.com
yostlabs.com

A

ANZ2016.01

Using the Prio API for
wireless streaming with
a PrioVR™ Basestation

Nick Leyder
Lead Software Engineer, Yost Labs

Introduction

The PrioVR Suit is a full-body suit that tracks motion using
19 PrioVR Sensors and a central PrioVR Hub. The PrioVR
Sensors are inertial measurement units that give accurate
drift-free absolute orientations of the user’s body. The
PrioVR Hub collects the data from the PrioVR Sensors, and
sends it wirelessly to the PrioVR Basestation. The PrioVR
Basestation communicates the received data to the host

computer via USB (shown in Figure 1).

The purpose of this document is to provide an overview

of streaming data from a PrioVR Suit using the PrioVR
Basestation. The example code below illustrates the use of
the Prio API to read the global orientations from the PrioVR
Suit and print them to the screen.

Description
In order to achieve wireless streaming, the Prio APl must:

1. Find the PrioVR Basestation connected to the computer
2. Find the PrioVR Hub connected to the Basestation

3. Start streaming the data

4. Read the data

5. Stop streaming and deinitialize the Prio API to allow for

later use.

Figure 1

© 2005-2016 YOST LABS -

A4

Step 1: Creating the PrioVR Basestation
The first step in using a PrioVR suit through the Prio APl is to create a PrioVR

Basestation to work with.

// An unique identifier used by the PrioVR API to
prio_device_id bs_device;

// An unique didentifier used by the PrioVR API to
prio_device_id hub_device;

// The communication port of a PrioVR Basestation
prio_ComPort port;

// Allocate a char array of 64 chars for the port
port.port_name = new char[64];

// An dindex into the array of communication ports
uint8_t com_offset = 0;

identify the PrioVR BaseStation

identify the PrioVR Hub

name

found by the Prio API

// Find all of the communication ports that corresponded to PrioVR Basestations

prio_findPorts(PRIO_BS);

// Get the communication port at the index of com_

offset

prio_getPort(&port.port_name, com_offset , &port.device_type);

// Create a PrioVR Basestation object from the communication port

prio_createBaseStation(port.port_name &bs_device);

This code creates variables to store identifiers for PrioVR Basestation, PrioVR

Hub, the communication port of the PrioVR Basestation, and an offset into

the found communication ports.

After creating these variables, the code finds and creates a PrioVR

Basestation connected to the host PC at the given offset in the

communication ports (com_offset), and assigns its identifier to bs_device. If

none is present, bs_device will be set to an error value. This identifier will be

passed to further functions that reference the PrioVR Basestation.

© 2005-2016 YOST LABS -

A4

Step 2: Getting the PrioVR Hub

With the PrioVR Basestation created it is now time to find the paired
PrioVR Hub.

// Get the PrioVR Hub paired to the PrioVR Basestation
prio_bs_getWirelessHub(bs_device, &hub_device);

This code will find a PrioVR Hub that has been paired with the PrioVR
Basestation, and assigns its identifier to hub_device. If none is present,
hub_device will be set to an error value. This identifier will be passed to
further functions that reference the PrioVR Hub.

Step 3: Start Streaming

With the PrioVR Basestation created and it's PrioVR Hub found, it is now
time to specify what data to gather and to instruct the PrioVR Basestation
to begin gathering that data from the PrioVR suit.

// This starts streaming untared orientations, at an interval of 10000 mircoseconds

// forever

prio_bs_startStreaming(bs_device, PRIO_STREAM_UNTARED_ORIENTATION_AS_QUATERNION, 10000,
PRIO_STREAM_DURATION_INFINITE);

This code will start streaming untared quaternions. The other options are:

PRIO_STREAM_TARED_ORIENTATION_AS_QUATERNION
PRIO_STREAM_ALL_CORRECTED_COMPONENT_SENSOR_DATA
PRIO_STREAM_CORRECTED_GYRO_RATE
PRIO_STREAM_CORRECTED_ACCELEROMETER_VECTOR
PRIO_STREAM_CORRECTED_MAGNETOMETER_VECTOR
PRIO_STREAM_ALL_RAW_COMPONENT_SENSOR_DATA
PRIO_STREAM_RAW_GYROSCOPE_RATE
PRIO_STREAM_RAW_ACCELEROMETER_DATA
PRIO_STREAM_RAW_MAGNETOMETER_DATA

O oo ~NOOU b WNRE

Up to 512 bits in any combination of up to 8 options can be streamed
simultaneously.

© 2005-2016 YOST LABS -

A4

Step 4: Read the Data

At this point, orientation data will be automatically obtained from the PrioVR
Basestation at a regular interval. All that remains is to read the data, and print
it to the screen.

// For as long as you need suit data for
while(true) {

// The header data from the packet
prio_StreamHeaderData header_data;

// The packer data from the packet, sized for 19 sensors
U8 packet_data[304];

// Retrieve the latest packet from the PrioVR Hub
prio_hub_getLastStreamingPacket (hub_device, &header_data, &packet_datal[0]);

// A float array for storing 19 quaternions
float packet_quats[76];

// Copy the packet data into the float array
memcpy (packet_quats, packet_data, 304);

// Loop until all of the packet quaternions have been printed
int i=0;

do {

// Printing out the sensor quaternions
printf(“(%f,%f,%f,%f)”,packet_quats[i],packet_quats[i+1],packet_quats[i+2],packet_quats[i+3]);

// Increment the quaternion array by the 4 consumed data
i += 45

} while(i < 76)

The “prio_StreamHeaderData “ structure used here is a container for two
uint8s that store the battery level, the state of the PrioVR Hub buttons,
and two prio_Joystick that hold the joystick data. The “prio_JoystickData”
structure is a container for four uint8s that hold the x_axis, y_axis, trigger

state, and button state.

The “packet_data” used here is an array that holds all of the data streamed
by the PrioVR Hub for 19 sensors. This data is in an array where a sensor’s
quaternion data is 16 spots in the array ([0-15],[16-31]...[287-303]). The code
then converts that data into a float array for ease of use, and prints the data
to the user. A quaternion can be converted to any other major orientation
format, including rotation matrix, axis-angle, or Euler angles.

© 2005-2016 YOST LABS -

A4

Step 5: Finish Up

Before the program ends, streaming must be stopped and the Prio APl must be

shut down.

This is accomplished with the functions below

// Stops the streaming of the PrioVR Basestation and PrioVR Hub
prio_bs_stopStreaming(bs_device);

// Deinitialize the Prio API

prio_deinitAPI();

Complete Example

#include <stdio.h>
#include <time.h>
#include “prio_api_export.h”

#define PRIO_STREAM_DURATION_INFINITE oxffffffff

void main() {

// An unique tidentifier used by the PrioVR API to identify the PrioVR BaseStation
prio_device_id bs_device;

// An unique identifier used by the PrioVR API to 1identify the PrioVR Hub
prio_device_id hub_device;

// The communication port of a PrioVR Basestation
prio_ComPort port;

// Allocate a char array of 64 chars for the port name
port.port_name = new char[64];

// An 1index into the array of communication ports found by the Prio API
uint8_t com_offset = 0;

// Find all of the communication ports that correspond to PrioVR Basestations
prio_findPorts(PRIO_BS);

// Get the communication port at the index of com_offset
prio_getPort(&port.port_name, com_offset , &port.device_type);

// Create a PrioVR Basestation object from the communication port
prio_createBaseStation(port.port_name &bs_device);

// Get the PrioVR Hub paired to the PrioVR Basestation
prio_bs_getWirelessHub(bs_device, &hub_device);

// This starts streaming untared orientations, at an interval of 10000 mircoseconds forever
prio_bs_startStreaming(bs_device, PRIO_STREAM_UNTARED_ORIENTATION_AS_QUATERNION, 10000,
PRIO_STREAM_DURATION_INFINITE);

// For as long as you need suit data for
while(true) {

© 2005-2016 YOST LABS -

// The header data from the packet
prio_StreamHeaderData header_data;

// The packer data from the packet, sized for 19 sensors

U8 packet_data[304];

// Retrieve the latest packet from the PrioVR Hub
prio_hub_getLastStreamingPacket (hub_device, &header_data, &packet_datal[0]);

// A float array for storing 19 quaternions

float packet_quats[76];

// Copy the packet data into the float array
memcpy (packet_quats, packet_data, 304);

// Loop until all of the packet quaternions have been printed

int i=0;
do {

// Printing out the sensor quaternions
printf(“(%f,%f,%f,%f)”,packet_quats[i],packet_quats[i+1],packet_quats[i+2],

packet_quats[i+3]);

// Increment the quaternion array by the 4 consumed data

i += 4

} while(i < 76)

// Stops the streaming of the PrioVR Basestation and PrioVR Hub

prio_bs_stopStreaming(bs_device);

// Deinitialize the Prio API
prio_deinitAPI();

2 YOST?

YOST LABS
630 Second Street
Portsmouth Ohio 45662, USA

Phone: 740.876.4936
info@yostlabs.com
yostlabs.com

Made in USA. Patents:
8498827, 8682610,
9255799, 9354058.
Additional patents pending.

About Yost Labs, Inc. We are a fast growing private company based in historic
Portsmouth, Ohio. With over a decade of experience in low-latency inertial sensor
innovation, we enable motion tracking in many of today’s and tomorrow’s most
exciting products. We make virtual reality interactive. We stabilize drones and
navigate autonomous cars. We measure human motion for athletic performance
and rehabilitation. We are dedicated to supporting you and your team—providing
expert advice and integration consulting for the world’s fastest inertial motion
sensor technology.

Yost Labs’ innovation has been recognized with numerous patents with
additional patents pending. Our customers and value-added resellers include the
US Navy, US Air Force, NASA, US Army Corps of Engineers and over 1,000 leading
technology firms and academic institutions around the world.

© 2005-2016 YOST LABS -

